THE JOURNAL OF PHYSICAL CHEMISTRY

Subscriber access provided by Politechnika Wroclawska - CWINT

B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in Solution

Efficient Singlet Oxygen Photogeneration by Zinc Porphyrin-Dimers Upon One- and Two-Photon Excitation

Leszek Mateusz Mazur, Thomas J. Roland, Stephanie Leroy-Lhez, Vincent Sol, Marek Samoc, Ifor D.W. Samuel, and Katarzyna Matczyszyn

J. Phys. Chem. B, Just Accepted Manuscript • DOI: 10.1021/acs.jpcb.8b12561 • Publication Date (Web): 05 Mar 2019 Downloaded from http://pubs.acs.org on March 27, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Efficient Singlet Oxygen Photogeneration by Zinc Porphyrin-Dimers Upon One- and Two-Photon Excitation.

Leszek M. Mazur^a, Thomas Roland^b, Stephanie Leroy-Lhez^c, Vincent Sol^c, Marek

Samoc^a, Ifor D.W. Samuel^{*b}, Katarzyna Matczyszyn^{*a}

^a Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw

University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,

Poland

^b Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University

of St Andrews, Fife, KY16 9SS, UK

^c Laboratoire PEIRENE EA 7500, Faculté des Sciences et Techniques 123, Avenue

Albert Thomas, Limoges cedex 87060, France

ABSTRACT

 The development of photodynamic therapy at depth requires photosensitizers which have both sufficient quantum yield for singlet oxygen generation and strong two-photon absorption. Here we show that this can be achieved by conjugated linkage of zinc porphyrins to make dimers. We determined the quantum yield of generation of ${}^{1}O_{2}$, ϕ_{4} , by measuring emission at 1270 nm using a near infra-red streak camera and found it to increase from 15% for a single porphyrin unit to 27-47% for the dimers with a conjugated linker. Then, we measured the spectra of two-photon absorption cross section, σ_2 , by a focus-tunable Z-scan method, which allows for nondestructive investigation of lightsensitive materials. We observed a strong enhancement of the two-photon absorption coefficient in the dimers, especially those with an alkyne linker. These results lead to an excellent figure of merit for two-photon production of singlet oxygen (expressed by the product $\sigma_2 \times \phi_A$ in the porphyrin dimers, of around 3700 GM, which is very promising for applications involving treatment of deep tumors by photodynamic therapy.

1. INTRODUCTION

Photodynamic therapy (PDT) is a widely	killing Propionibacterium acnes),
used cancer treatment, particularly for the	periodontology ⁶ , treatment of viral lesions ⁷
treatment of superficial cancers such as	and age-related macular degeneration ⁸ .
many skin cancers ¹ . PDT involves the use	In order to efficiently photogenerate
of light in combination with a	singlet oxygen, a material should fulfill a
photosensitizer to cause a photochemical	few criteria. It needs to absorb excitation
reaction, leading to the generation of	light and have a triplet energy level higher
reactive oxygen species (ROS) ² , which	than 397 kJ/mol to allow for efficient
then kill neighboring tumor cells. Whilst	energy transfer to ground state oxygen
most often used to kill cancer cells, the	and hence the generation of singlet
reactive oxygen species can also be used	oxygen. Moreover, it should have high
to kill bacteria thereby providing a	triplet quantum yield and long triplet state
powerful alternative to antibiotics in the	lifetime ² . Despite these requirements,
management of topical infections ^{3, 4} . For	there are many materials capable of
example, in addition to cancers, PDT has	photogenerating singlet oxygen, they can
been used in the treatment of $acne^5$ (by	be grouped into: (1) the organic dyes and

ACS Paragon Plus Environment

1 2	
3	
4	
5 6	
7	
8	
9 10	
10 11	
12	
13	
14 15	
16	
17	
18 19	
20	
21	
22 23	
24	
25	
26 27	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38 39	
39 40	
41	
42 43	
45 44	
45	
46 47	
47 48	
49	
50	
51 52	
53	
54 55	
55 56	
57	
58	
59 60	
00	

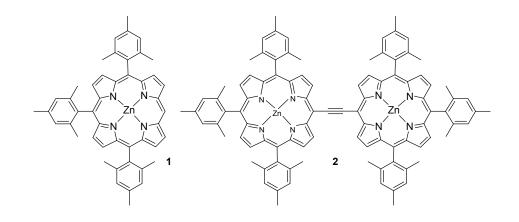
aromatics ⁹ ; (2) the porphyrins, chlorins,	wavelengths in the biological
phthalocyanines, and related	transparency windows of tissue at
macrocycles ¹⁰ ; (3) semiconductors ¹¹ ; and	650-950 nm and 1000-1250 nm ¹⁴ . As only
(4) metal nanoparticles ^{12, 13} . Among these	few photosensitizers have a linear
photosensitizers, porphyrin derivatives	absorption band in this wavelength
attracted significant attention and some of	region ¹⁵ , two-photon excitation in which
them are already in clinical use.	two longer wavelength photons are
Photodynamic therapy has been widely	simultaneously absorbed is a natural way
used to kill tumor cells, which are located	to achieve the desired excitation energy
close to skin surface, due to the fact that	with longer wavelength light that can
the photosensitizers are excited with	penetrate further into tissue. The
wavelengths which are strongly absorbed	photosensitizers which aim to be used in
and scattered by the tissue. PDT could	two-photon excited PDT should be
treat a much wider range of conditions if it	characterized by high quantum yield of
could work at greater depth which could	singlet oxygen generation, ϕ_{Δ} , and large
be achieved by using excitation	two-photon absorption cross-sections.

ACS Paragon Plus Environment

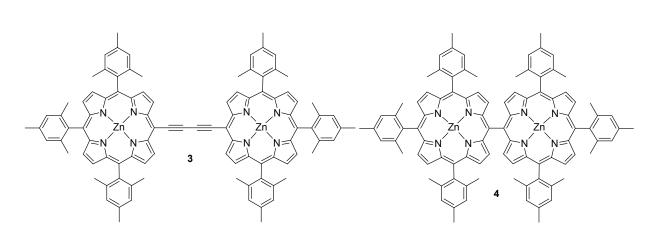
28	The Journal of Phy	vsical Chemistry
	Typical porphyrin derivatives ¹⁶⁻¹⁸ , even	consider this figure of merit when
	those accepted for clinical use like	normalized by molecular weight i.e.
	Photofrin [®] , Verteporfin [®] or Foscan [®] are	$\sigma_2 \times \phi_{\Delta} / M$, marked as $(\sigma_2 \times \phi_{\Delta})^*$ to facilitate
	indeed efficient singlet oxygen generators	comparison of large and small candidate
	but suffer from low two-photon absorption	photosensitizers. In the case of
	cross-sections, on the order of 1 GM ^{19, 20} .	porphyrins, in order to maximize the
	In that context, there is a need to design	parameter $\sigma_2 x \phi_A$, insertion of a metal ion
	and synthesize new molecules with	leads to a trade-off as it causes reduction
	excellent figure of merit for two-photon	of the singlet oxygen quantum yield ²¹ and
	production of singlet oxygen (expressed	increase of the 2PA cross-section.
	by the product $\sigma_2 \times \phi_A$). It is also relevant to	
	In the field of nonlinear optics, the	been shown that centrosymmetric
	general rules for molecular design to	quadrupolar compounds have larger
	maximize 2PA cross-section exist in the	values of σ_2 than their dipolar
	literature and are supported by both	counterparts ²² . In addition, introducing
	theoretical and experimental work. It has	strong electron donating (D) or electron
	ACS Paragon Plu	
		5

withdrawing (A) groups to yield the	or higher order oligomers ^{17, 23, 24} . In the
structures like D-A-D or A-D-A further	present work we use metal containing
improves 2PA properties ²³ . Finally, the	porphyrins and explore the effect of
process of simultaneous absorption of two	increasing electron delocalization by
photons requires strong overlap of the	conjugated links between macrocycles. In
$\pi\text{-}orbitals$ over a large system, making it	particular, we explore the photogeneration
sensitive to molecular conformation	of singlet oxygen and two-photon
changes, which may alter the electronic	absorption in a series of zinc porphyrins,
coupling.	either being a monomer (compound 1), or
The general structure-property rules can	a dimer, linked by ethyne (2) or di-ethyne
be applied to porphyrin based	link (3) or by a single bond (4), as depicted
compounds. It has been shown that 2PA	in Scheme 1.
properties may be tuned by metal	There are numerous papers
insertion, adding electron donating or	investigating either the two-photon
withdrawing groups and expanding the	absorption or singlet oxygen

photogeneration properties of porphyrin


ACS Paragon Plus Environment

 π -conjugated system by creating dimers


based compounds, but not so many where the combination of these two effects is presented²⁵⁻²⁷. Our goal was to carry out interdisciplinary research covering the nonlinear optical properties and singlet oxygen photogeneration, thus providing strong support to the results and conclusions concerning the structureproperty optimization. Singlet oxygen

generation was studied using an infra-red

streak camera. The two-photon absorption properties were investigated by the focustunable Z-scan method, which has the important advantage over alternative methods of being quick, thereby avoiding photodegradation which is a particular consideration in the measurement of materials intended to cause photochemistry.

ACS Paragon Plus Environment

Scheme 1. Structures of investigated compounds.

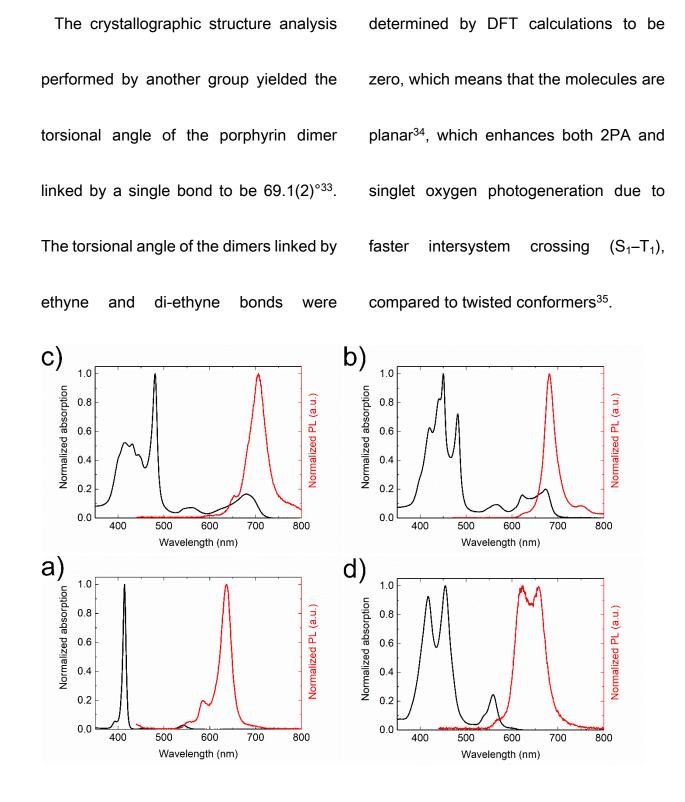
2. EXPERIMENTAL SECTION

The molecules used in this work were	spectrophotometer. The concentration of
synthesized and purified according to the	the solution was adjusted to reach optical
protocols described in ²⁸ . The molecules	densities suitable for the PL and emission
were dissolved in chloroform (Sigma-	from singlet oxygen experiments. Steady-
Aldrich) and quartz cuvettes were filled	state PL spectra were recorded using an
with the solutions for the photophysical	automated spectrofluorometer (Fluorolog,
measurements. UV-vis absorption spectra	Horiba Jobin-Yvon), with a 450 W Xenon
were measured using a Perkin Elmer	lamp excitation source. The solution
Lambda 1050 UV/Vis/NIR	singlet oxygen quantum yield (SOQY) ($\phi_{\!arsigma}$)

values were determined using	PHAROS regenerative amplifier (output
tetraphenylporphyrin (H ₂ TPP) from Fisher	wavelength 1028 nm, pulse duration 290
Scientific in chloroform solution as a	fs, repetition rate 5 kHz) was directed to an
standard reference because of its well-	optical parametric amplifier (OPA, a Light
known SOQY of 55% ²⁹ . The direct	Conversion OPHEUS-F). The OPA
emission of singlet oxygen at 1270 nm	generated 828 nm, which was further
was detected by a NIR streak camera from	frequency doubled to obtain 414 nm used
Hamamatsu Photonics. The camera was	to excite the samples. The output pulse
working in Photon Counting mode and the	duration was less than 100 fs. The
experiment was automatically stopped	quantum yield of singlet oxygen
after 50 000 frames for each sample. In	generation may be determined using the
order to prevent the degradation, the	modified method used by Tanielian and
samples solutions were placed in a	Heinrich ³⁰ and using equation 1 ²¹ :
rotating cell, placed in such a way that the	$\phi_{\Delta x} = \phi_{\Delta r} \frac{A_r(\lambda_r)}{A_x(\lambda_x)} \frac{I(\lambda_r)}{I(\lambda_x)} \frac{D_x}{D_r} \frac{\tau_r}{\tau_s} $ (1)
exciting beam was shifted from the center.	
The beam from a Light Conversion	

where ϕ_A stands for the quantum yield of singlet oxygen generation, the subscripts x and r refer to the compound to be characterized and reference to the solutions, respectively. λ is the excitation wavelength, $A(\lambda)$ is the absorbance, $I(\lambda)$ is the relative intensity of the excitation light, r is the lifetime of singlet oxygen emission in the sample and reference solvent, and D is the integrated area under the emission spectra. As, the samples and reference solutions are excited at the same conditions and they are dissolved in chloroform, the

above equation can be simplified to:


$$\phi_{\Delta x} = \phi_{\Delta r} \frac{A_r(\lambda_r)}{A_x(\lambda_x)} \frac{D_x}{D_r}$$
(2)

The two-photon absorption cross-sections were determined by f-scan method described in³¹. The laser system used for this study was a Quantronix Integra Ti:Sapphire regenerative amplifier (output wavelength: 800 nm; pulse duration: 130 fs; repetition rate: 1 kHz) that pumped an optical parametric amplifier (OPA, a Quantronix Palitra) to provide tunable excitation. The sample solution dissolving prepared by the was corresponding chromophore in chloroform at concentration of 0.5% (w/w) and placed in a glass cell with 1 mm optical path-

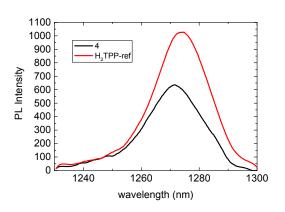
length. The measurements were carried	porphyrin, compound 1 , (Figure 1a), two
out in a relative manner, calibrating all the	absorption bands are clearly visible. The
data against f-scans carried out on a fused	Soret band is located at 414 nm and so
silica plate and taking into account the	called Q-band at 543 nm. For the dimers,
nonlinear signals obtained from a cell	the Q-bands are intensified they show
containing pure solvent.	bathochromic shift compared to molecule
3. RESULTS AND DISCUSSION	1. Moreover, both Soret and Q-bands are
Steady-state electronic absorption.	much broader with additional peaks visible
The absorption and photoluminescence	in the absorption spectra for compounds
spectra of the investigated compounds	2-4 . It is worth to mention that the stronger
were measured in dilute CHCl ₃ solutions	Q-band absorption is responsible for
with 1×10 ⁻⁶ mol/L concentration.	enhanced 2PA properties in the NIR.
Maximum absorption wavelengths and	Fluorescence occurs from the Q-band,
maximum emission wavelengths are listed	whichever band is excited. The
in Table 1. The absorption spectra are	fluorescence bands of compounds 2 and
displayed in Figure 1. For the monomeric	3 show a bathochromic shift with respect

1 2
3 4 5
6 7 8
9 10
12 13
14 15 16
17 18 19
20 21 22
23 24 25
26 27 28
29 30 31
32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
54 55 56 57
58 59
60

to compound 1 (Figure 1a-c). The	as $B_x(0-0)$ transition. There are also other
bathochromic shift of the absorption and	B_{x} and B_{y} transitions which span a wide
fluorescence bands can be explained by	region to the blue from the $B_x(0-0)$
the decreased HOMO-LUMO gap due to	transition. In the case of compound 4 the
π -delocalization between the neighboring	molecule is no longer planar due to steric
porphyrin units ²⁴ . Polarized absorption	hindrance, and so the dimerization does
spectroscopy revealed that for the dimers	not lead to increased electron
linked with ethyne and di-ethyne bonds,	delocalization. There is an almost equally
the lowest energy transitions were	intense split in the Soret absorption and Q-
polarized along the molecular axis (<i>x</i>) and	band emission of 4 (Figure 1d), which can
can be called $Q_x(0-0)^{17}$. They are followed	be explained by the excitonic coupling
by vibronic satellites. In the Soret region,	between the two parallel strong dipole
there is a group of <i>x</i> - and <i>y</i> -polarized	transitions of each porphyrin ring ^{28, 32} . The
transitions. Among them, the lowest	magnitude of the absorption band split is
energy and relatively narrow transitions is	equal to 2002 cm ⁻¹ and the emission band

Figure 1. Normalized absorption (black curves) and steady-state fluorescence spectra (red curves) of investigated porphyrins. Figures a) to d) correspond to molecules **1** to **4**, respectively.

Singlet oxygen detection.


The singlet oxygen quantum yield, ϕ_A , emission. The spectra obtained for sample 4 and the reference are shown in Figure 2. determined by recording direct was emission from singlet oxygen centered at Finally, the spectra were integrated to 1270 nm by a NIR streak camera. The obtain the D factors necessary to calculate transition from first excited singlet state the quantum yield of singlet oxygen ${}^{\prime}\Delta_{g}$ to ground state being triplet, ${}^{\mathcal{D}_{g}}$, is photogeneration. The values of ϕ_{Δ} of all spin forbidden². This is the reason for the investigated compounds are summarized in Table 1. The least efficient is the emission lifetime on the order of us, which strongly depends on the solvent²¹. monomeric unit (1). The dimerization The signals were integrated from 8 to leads to enhanced properties of singlet μ s to obtain the spectra of $^{1}O_{2}$ oxygen photogeneration, regardless the

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

type of the link. One can notice that the value of ϕ_{Δ} for compound **4**, which is not conjugated due to steric hindrance, is approximately doubled, compared to 1. On the other hand, compounds 2 and 3, which have large π -delocalization and are close to planar, are characterized with much larger ϕ_{Δ} being equal to 35 and 47 %. These findings are in good agreement with other works on porphyrins dimers, e.g. with porphyrin units linked by butadiyne bond linked to TIPS-protected ethynyl groups³⁶. The determined ϕ_{Δ} of such porphyrin dimer in DCM was reported to be 37 %, which means that the structural design of compounds 2 and 3

are more efficient in terms of singlet

oxygen production.

Figure 2. Singlet oxygen emission spectra of **4** and H₂TPP, obtained by integrating the streak camera images from 8 to 50 μs. **Table 1**. Steady-state photophysical properties of the investigated compounds (1-4) and their singlet oxygen quantum yields. The positions of the most intensive bands are given in bold.

porphyrins λ_{abs} (nm) λ_{em} ϕ_{Δ} (nm)(%)
--

Page	16	of	28
------	----	----	----

	Soret band	Q- band		
1	393 414	542	554 585 637 700	15
2	420 441 450 482	566 622 673	627 681 751	35

	414	5(2)	599 654	
3	431 444	562 681	706	47
	481 417	538	785 567	
4	417	558 600	624 658	27

Two-photon absorption cross-section	measures the changes of sample
spectra.	transmission as a function of the sample
The spectra of two-photon absorption	position in Z direction and fit the data
cross-section may be obtained by many	recorded on so called Open Aperture
methods, two-photon excited	curve as described in the literature ^{38, 41} to
fluorescence (TPEF)37 and fs Z-scan38-41	determine the value of two-photon
being the most common nowadays. They	absorption cross-section at the specific
strongly differ from each other, as in TPEF	wavelength. In order to obtain reliable data
one detects fluorescence spectrum at	by these two aforementioned techniques,
various wavelengths and compares the	the samples have to be perfectly
integrated PL with a standard reference	photostable.

with known PLQY and σ_{2} . In Z-scan one

ACS Paragon Plus Environment

2
3
4
5
6
/ 8
9
10
11
12
13
14 15
15 16
17
18
19
20
21
22 23
23 24
25
26
27
28
29
30 31
32
33
34
35
36
37 38
30 39
40
41
42
43
44 45
45 46
47
48
49
50
51
52 53
55 54
55
56
57
58
59 60
60

Upon photoexcitation with one- and	the f-scan technique, instead of translating
two-photons the singlet oxygen which is	the sample, the focal point is shifted by an
generated by the investigated porphyrins	electrically controlled lens ³¹ . Combined
causes their degradation. It is important to	with improved data acquisition technique,
mention that each photosensitizer	this method reduces the time necessary
molecule can typically produce 10 ³ -10 ⁵	for a single scan from a few minutes to
molecules of ¹ O ₂ before being degraded	several seconds, thus limiting the
through photobleaching by $^{1}O_{2}$ or by some	possibility of photodegradation. While the
other process ² . Thus, it is crucial to	vast majority of published papers
minimize the time of irradiation especially	described only the singlet oxygen
with high power laser used to study the	photogeneration process, or two-photon
nonlinear effects. Hence we use the so-	absorption properties of the studied
called "f-scan" technique which is a	photosensitizers, in this work both are
modification of the standard Z-scan	treated with equal attention and detail,
method, to determine the spectra of	allowing for more reliable conclusions.
two-photon absorption cross-section. In	

The spectra of two-photon absorption cross-sections of investigated porphyrins obtained by f-scan technique are shown in Figure 3. They are overlaid with linear absorption spectra, shown as red curves,

plotted vs. twice the wavelength. For all

porphyrins, both the monomer (**1**) and dimers (**2-4**) the maximum of two-photon absorption cross-sections is within first biological window which exists at wavelengths between 650 nm and 950 nm¹⁴.

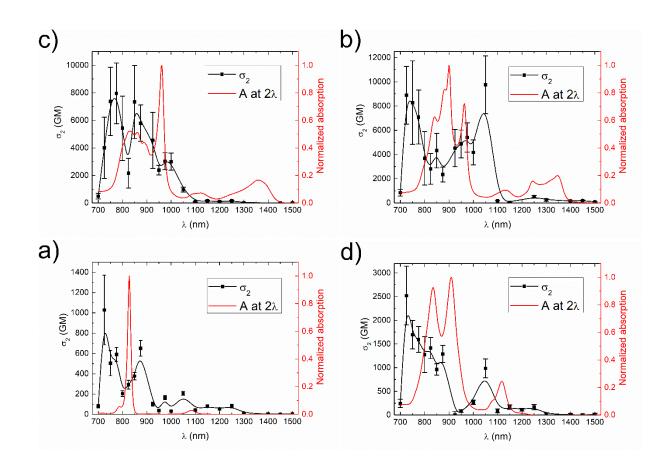


Figure 3. Spectra of two-photon absorption cross-sections of the investigated porphyrins (1-4). The spectra were overlaid with linear absorption (red curves) plotted vs. twice the wavelength. Figures a) to d) correspond to compounds 1 to 4. In case of the monomer 1, the maximum means that it is favorable for the value of σ_2 is around 1000 GM at 725 nm, molecules to be excited to higher vibronic as shown in Figure 3. a). One can see that state upon 2PA excitation, compared to the band of 2PA is split into two, even 1PA process. Despite the fact that linear though the linear absorption shows only absorption of 4 is split into two equally

intense bands, the 2PA spectrum is

different. One can see that the band at

725 nm is much more intensive that that at

875 nm. The maximum value of σ_2 , measured at 725 nm is approximately doubled compared to those of compound

1 and is equal to 2500 GM. In the studies

value of σ_2 among other 2PA bands. It

one peak at 414 nm. It is caused by

different selection rules for one- and

two-photon absorption, as described in the

literature²². It is worth noticing that the high

energy 2PA band at 725 nm is observed

for all the compounds and has the highest

of two-photon absorption cross-sections	but its position remains the same, the
various normalization factors are used,	wavelength of maximum σ_2 is equal to
among which the normalization to molar	725 nm. However, the low energy band,
mass is the most popular. If the maximum	which is located at 875 nm for other
σ_2 is divided by molar mass, a similar	investigated compounds, is
value is obtained, which means that such	bathochromically shifted to 1050 nm.
structural change does not impose neither	Similarly to compound 1, there is a dip in
cooperation nor deleterious effects on the	the two-photon absorption cross-section
multiphoton absorption properties of the	spectra at twice the wavelength of
investigated compounds 1 and 4. In case	maximum 1PA band. The 2PA spectrum
of compounds 2 and 3, the spectra of	of compound 3 is presented in Figure 3. c).
two-photon absorption cross-section show	The higher energy band is
more complex structures, similarly to their	bathochromically shifted by 50 nm to
1PA spectra. For compound 2	775 nm and the value of σ_2 is around 8000
(Figure 3. b), the higher energy 2PA band	GM being slightly lower than for
is broader than for compounds 1 and 4,	compound 2. For both compounds 2 and

ACS Paragon Plus Environment

3
4
5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
54 55
56
57
58
59

60

3 , the maximum value of two-photon	The values of maximum two-photon
absorption cross-section is enhanced few	absorption cross-section and the figure of
times, while keeping the molar mass	merit are listed in Table 2. The dimers of
similar to compound 4 . The results prove	zinc porphyrins, especially connected by
that a simple modification of the linker,	ethyne and di-ethyne link, are much more
from single bond (4) to ethyne (2) and di-	effective two-photon photosensitizers than
ethyne (3) links between the zinc	tetraphenyl porphyrin, or other porphyrin
porphyrins cores cause cooperation	derivatives that are commercially used for
effect, enhancing the σ_2^* figure of merit.	PDT.

Table 2. Two-photon absorption cross-section, merit factors and two-photon excited oxygen sensitization properties of the investigated porphyrins (**1-4**).

						Two-photon excited
	λ_{2PA}^{max}	σ_2^{max}	$\sigma_2^{max} *$	$\sigma_2^{max} \cdot \phi_{\Delta}$	$\sigma_2^{max} \cdot \phi_{\Delta} *$	oxygen
	(nm)	(GM)	(GM·mol/g)	(GM)	(GM·mol/g)	sensitization
						enhancement factor ^[c]
1	725	1030	1.4	155	0.21	21
2	725	8900	6.1	3115	2.15	433
3	775	7950	5.4	3737	2.53	519
4	725	2500	1.7	675	0.45	94
H ₂ TPP	790	12 ^[a]	0.02	7.2 ^[b]	0.01	1

^[a] taken from reference ⁴²

^[b] taken from reference ²⁷	
^[c] Enhancement factor: $\sigma_2^{max} \cdot \phi_{\Delta}$ of the compour	Id normalized to that of H_2 TPP.
It was previously shown e.g. by TPEF	conditions in the three-level system and
measurements ¹⁷ , that dimerization of	dramatic enhancement of the excited-
porphyrin units leads to enhanced 2PA	state singlet-singlet transition due to linear
cross-sections and enhanced two-photon	elongation of the π -conjugated system.
production of singlet oxygen. The σ_2	Insertion of side groups, being either
determined for the porphyrin dimer linked	electron acceptors (A) or donors (D)
by ethyne and di-ethyne bonds were on	influence the σ_2 in a way that two-photon
the order of 8200 and 5500 GM, which is	absorption cross-section is the lowest for
similar to the values found in the current	neutral porphyrins, higher for the
work for similar porphyrin derivatives. The	porphyrins extended with A and the
cooperative effect was explained by a	highest for compounds with D groups ⁴³ .
combination of several factors, including	Even though the vast majority of
strong enhancement of the lowest one-	molecules targeted to be used in 2PA PDT
photon Q-transition, better resonance	are based on the porphyrin structure,

2	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
$3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 37 \\ 38 \\ 37 \\ 38 \\ 37 \\ 38 \\ 38 \\ 37 \\ 38 \\ 38$	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
59	

60

there are some alternative approaches	photogeneration properties in a series of
with reasonable figures of merit. One	zinc porphyrins, either in a monomer or
example is a macromolecular	dimer form. The dimers were connected
photosensitizer, which was obtained via	by single bond, or by ethyne, or di-ethyne
the covalent anchoring of several	link. We observed strong enhancement of
molecular PS based on a	the obtained quantum yields for
dibromobenzene (DBB) core onto a water-	two-photon excited singlet oxygen
soluble polymer chain based on	generation (expressed by the product
poly(N-acryloyImorpholine). It resulted in	$\sigma_2^{max} \star \phi_\Delta$ in the porphyrin dimer
large 2PA cross-section up to 2600 GM at	connected by di-ethyne link, around
740 nm and was proved to be an efficient	3700 GM, which is around 500 times more
candidate to cause melanoma cells death	efficient than tetraphenyl porphyrin. It can
upon photo irradiation44.	be seen that in case of zinc porphyrin
4. CONCLUSIONS	derivatives, structure optimization towards
In this work, we investigated two-photon	high two-photon absorption cross-section
absorption and singlet oxygen	simultaneously enhances the properties of

ACS Paragon Plus Environment

2
3
4
5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
50 51
52
53
54
55
56
57
58
59

1 2

singlet oxygen photogeneration. Thus, in		
order to obtain a material capable of		
efficient production of singlet oxygen upon		
two-photon excitation, one should		
increase the conjugation length, so that		
π -delocalization is maximized, while		
maintaining planar structure, as shown for		
compounds 2 and 3. The results are very		
promising for applications involving		
treatment of deep tumors by		
photodynamic therapy.		
AUTHOR INFORMATION		
Corresponding Author		
katarzyna.matczyszyn@pwr.edu.pl;		
idws@st-andrews.ac.uk		
ORCID		
Leszek M. Mazur: 0000-0002-4562-0743		

Vincent Sol: 0000-0003-0175-0156

Marek Samoc: 0000-0002-5404-2455

Ifor D.W. Samuel: 0000-0001-7821-7208

Katarzyna Matczyszyn: 0000-0001-8578-8340

Conflict of interest statement

There are no conflicts to declare.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support from National Science Centre (Poland) under Opus program DEC-2013/09/B/ST5/03417, the EPSRC of the UK through grant EP/L017008/1 and the Conseil Régional du Limousin in France for financial support. The work was financed by a statutory activity subsidy

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54	
55	
56	
57	
58	
59	
60	

from the Polish Ministry of Science and		
Higher Education for the Faculty of		
Chemistry of Wroclaw University of		
Science and Technology. IDWS		
acknowledges a Royal Society Wolfson		
Research Merit Award. We thank		
the European Union as this work is a part		
of the ITN-EJD-2017 project POLYTHEA		
which has received funding from the		
European Union's Horizon 2020 research		
and innovation programme under the		
Marie Sklodowska-Curie grant agreement		
n°764837.		
REFERENCES:		

1. Brown, S. B.; Brown, E. A.; Walker, I., The Present and Future Role of Photodynamic Therapy in Cancer Treatment. *Lancet Oncol.* **2004**, *5*, 497-508. 2. DeRosa, M. C.; Crutchley, R. J., Photosensitized Singlet Oxygen and Its Applications. *Coord. Chem. Rev.* **2002**, *233–234*, 351-371.

3. Yin, R.; Agrawal, T.; Khan, U.; Gupta, G. K.; Rai, V.; Huang, Y.-Y.; Hamblin, M. R., Antimicrobial Photodynamic Inactivation in Nanomedicine: Small Light Strides against Bad Bugs. *Nanomedicine* **2015**, *10*, 2379-2404.

4. Tardivo, J. P.; Adami, F.; Correa, J. A.; Pinhal, M. A. S.; Baptista, M. S., A Clinical Trial Testing the Efficacy of PDT in Preventing Amputation in Diabetic Patients. *Photodiagn. Photodyn. Ther.* **2014**, *11*, 342-350.

5. Bissonnette, R., Treatment of Acne with Photodynamic Therapy. *G. Ital. Dermatol. Venereol.* **2011**, *146*, 445-456.

6. Kumar, V.; Sinha, J.; Verma, N.; Nayan, K.; Saimbi, C.; Tripathi, A., Scope of Photodynamic Therapy in Periodontics. *Indian J. Dent. Res.* **2015**, *26*, 439-442.

7. Kharkwal, G. B.; Sharma, S. K.; Huang, Y.-Y.; Dai, T.; Hamblin, M. R., Photodynamic Therapy for Infections: Clinical Applications. *Lasers Surg. Med.* **2011**, *43*, 755-767.

8. Boscia, F.; Furino, C.; Sborgia, L.; Reibaldi, M.; Sborgia, C., Photodynamic Therapy for Retinal Angiomatous Proliferations and Pigment Epithelium Detachment. *Am. J. Ophthalmol.* **2004**, *138*, 1077-1079.

9. Redmond, R. W.; Gamlin, J. N., A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules. *Photochem. Photobiol.* **1999**, *70*, 391-475.

10. Murtinho, D.; Pineiro, M.; Pereira, M. M.; Rocha Gonsalves, A. M. d. A.; Arnaut, L. G.; Miguel, M. d. G.; Burrows, H. D., Novel Porphyrins and a Chlorin as Efficient Singlet Oxygen Photosensitizers for Photooxidation of Naphthols or Phenols to Quinones. *J. Chem. Soc.*, *Perkin Trans. 2* **2000**, 2441-2447.

11. Yamamoto, Y.; Imai, N.; Mashima, R.; Konaka, R.; Inoue, M.; Dunlap, W. C., Singlet Oxygen from Irradiated Titanium Dioxide and Zinc Oxide. *Methods Enzymol* **2000**, *319*, 29-37.

12. Chen, C.-W.; Hsu, C.-Y.; Lai, S.-M.; Syu, W.-J.; Wang, T.-Y.; Lai, P.-S., Metal Nanobullets for Multidrug Resistant Bacteria and Biofilms. *Adv. Drug Del. Rev.* **2014**, *78*, 88-104.

13. Huang, C.-C.; Liu, T.-M., Controlled Au– Polymer Nanostructures for Multiphoton Imaging, Prodrug Delivery, and Chemo–Photothermal Therapy Platforms. *ACS Appl. Mater. Interfaces* **2015**, *7*, 25259-25269.

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

14. Smith, A. M.; Mancini, M. C.; Nie, S., Bioimaging: Second Window for in vivo Imaging. *Nat. Nanotechnol.* **2009**, *4*, 710-711.

15. Habermeyer, B.; Guilard, R., Some Activities of Porphychem Illustrated by the Applications of Porphyrinoids in PDT, PIT and PDI. *Photochem. Photobiol. Sci.* **2018**, *17*, 1675-1690.

16. Goyan, R. L.; Cramb, D. T., Near-Infrared Two-Photon Excitation of Protoporphyrin IX: Photodynamics and Photoproduct Generation. *Photochem. Photobiol.* **2000**, *72*, 821-827.

17. Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.; Taylor, P. N.; Anderson, H. L., Extremely Strong near-IR Two-Photon Absorption in Conjugated Porphyrin Dimers: Quantitative Description with Three-Essential-States Model. *J. Phys. Chem. B* **2005**, *109*, 7223-7236.

18. Nowak-Król, A.; Wilson, C. J.; Drobizhev, M.; Kondratuk, D. V.; Rebane, A.; Anderson, H. L.; Gryko, D. T., Amplified Two-Photon Absorption in Trans-A2B2-Porphyrins Bearing Nitrophenylethynyl Substituents. *ChemPhysChem* **2012**, *13*, 3966-3972.

19. Balaz, M.; Collins, H. A.; Dahlstedt, E.; Anderson, H. L., Synthesis of Hydrophilic Conjugated Porphyrin Dimers for One-Photon and Two-Photon Photodynamic Therapy at NIR Wavelengths. *Org. Biomol. Chem.* **2009**, *7*, 874-888.

20. Karotki, A.; Khurana, M.; Lepock, J. R.; Wilson, B. C., Simultaneous Two-Photon Excitation of Photofrin in Relation to Photodynamic Therapy. *Photochem. Photobiol.* **2006**, *82*, 443-452.

21. Mathai, S.; Smith, T. A.; Ghiggino, K. P., Singlet Oxygen Quantum Yields of Potential Porphyrin-Based Photosensitisers for Photodynamic Therapy. *Photochem. Photobiol. Sci.* **2007**, *6*, 995-1002.

22. Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L., Two-Photon Absorption and the Design of Two-Photon Dyes. *Angew. Chem. Int. Ed.* **2009**, *48*, 3244-3266.

23. Wilkinson, J. D.; Wicks, G.; Nowak-Krol, A.; Lukasiewicz, L. G.; Wilson, C. J.; Drobizhev, M.; Rebane, A.; Gryko, D. T.; Anderson, H. L., Two-Photon Absorption in Butadiyne-Linked Porphyrin Dimers: Torsional and Substituent Effects. J. Mater. Chem. C 2014, 2, 6802-6809.

24. Kim, K. S.; Lim, J. M.; Osuka, A.; Kim, D., Various Strategies for Highly-Efficient Two-Photon Absorption in Porphyrin Arrays. *J. Photochem. Photobiol.*, *C* **2008**, *9*, 13-28.

25. Yao, D.; Hugues, V.; Blanchard-Desce, M.; Mongin, O.; Paul-Roth, C. O.; Paul, F., Dendritic Molecular Assemblies for Singlet Oxygen Generation: Meso-Tetraphenylporphyrin-Based Biphotonic Sensitizers with Remarkable Luminescence. *New J. Chem.* **2015**, *39*, 7730-7733.

26. McIlroy, S. P.; Cló, E.; Nikolajsen, L.; Frederiksen, P. K.; Nielsen, C. B.; Mikkelsen, K. V.; Gothelf, K. V.; Ogilby, P. R., Two-Photon Photosensitized Production of Singlet Oxygen: Sensitizers with Phenylene–Ethynylene-Based Chromophores. J. Org. Chem. **2005**, 70, 1134-1146.

27. Yao, D.; Zhang, X.; Triadon, A.; Richy, N.; Mongin, O.; Blanchard-Desce, M.; Paul, F.; Paul-Roth, C. O., New Conjugated Meso-Tetrafluorenylporphyrin-Cored Derivatives as Fluorescent Two-Photon Photosensitizers for Singlet Oxygen Generation. *Chem. - Eur. J.* **2017**, *23*, 2635-2647.

28. Jiblaoui, A.; Baudequin, C.; Chaleix, V.; Ducourthial, G.; Louradour, F.; Ramondenc, Y.; Sol, V.; Leroy-Lhez, S., An Easy One-Pot Desilylation/Copper-Free Sonogashira Cross-Coupling Reaction Assisted by Tetra-Butylammonium Fluoride (TBAF): Synthesis of Highly π -Conjugated Porphyrins. *Tetrahedron* **2013**, *69*, 5098-5103.

29. Poon, C. T.; Zhao, S. S.; Wong, W. K.; Kwong, D. W. J., Synthesis, Excitation Energy Transfer and Singlet Oxygen Photogeneration of Covalently Linked N-Confused Porphyrin-Porphyrin and Zn(II) Porphyrin Dyads. *Tetrahedron Lett.* **2010**, *51*, 664-668.

30. Tanielian, C.; Heinrich, G., Effect of Aggregation on the Hematoporphyrin-Sensitized Production of Singlet Molecular Oxygen. *Photochem. Photobiol.* **1995**, *61*, 131-135.

31. Kolkowski, R.; Samoc, M., Modified Z -Scan Technique Using Focus-Tunable Lens. J. Opt. 2014, 16, 125202.

32. L. Anderson, H., Building Molecular Wires from the Colours of Life: Conjugated

2	
5	
4	
5	
6	
7	
8	
0	
9	
IC)
11	
12	2
13	3
14	ł
15	
14	:
1-) 7
18	3
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 14\\ 15\\ 16\\ 7\\ 18\\ 20\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 20\\ 31\\ 32\\ 35\\ 37\\ 38\\ 37\\ 38\\ 37\\ 38\\ 37\\ 38\\ 37\\ 38\\ 37\\ 38\\ 37\\ 38\\ 37\\ 38\\ 37\\ 38\\ 37\\ 38\\ 38\\ 37\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38$)
20)
21	
22	,
22	-
23	5
24	ł
25	5
26	5
27	7
28	3
20	Ś
23	,
30)
31	
32	2
33	3
34	ł
35	
24	:
20) ,
3/	
38	3
39)
40)
41	
)
43	-
44	
45	
46	5
47	7
48	3
49	
45 50	
51	
52	2
53	3
54	Ļ

60

Porphyrin Oligomers. Chem. Commun. 1999, 2323-2330.

33. Senge Mathias, O.; Pintea, M.; Ryan Aoife, A., Synthesis and Crystal Structure of a Meso-Meso Directly Linked Bisporphyrin. *Z. Naturforsch., B: Chem. Sci.* **2011**, *66*, 553-558.

34. Peeks, M. D.; Neuhaus, P.; Anderson, H. L., Experimental and Computational Evaluation of the Barrier to Torsional Rotation in a Butadiyne-Linked Porphyrin Dimer. *Phys. Chem. Chem. Phys.* **2016**, *18*, 5264-5274.

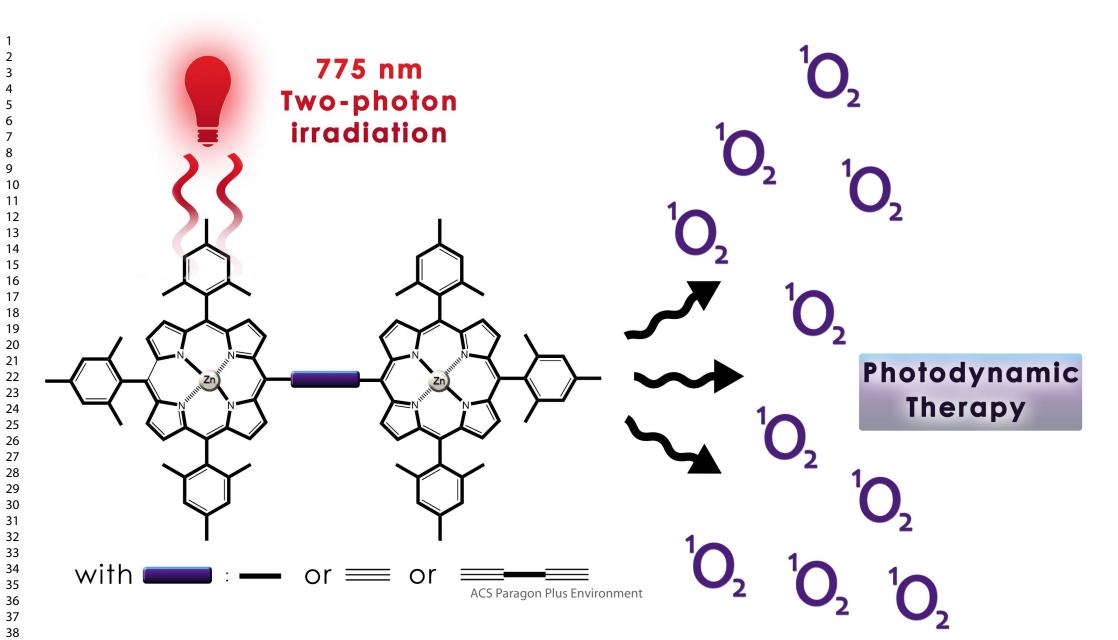
35. Kuimova, M. K.; Balaz, M.; Anderson, H. L.; Ogilby, P. R., Intramolecular Rotation in a Porphyrin Dimer Controls Singlet Oxygen Production. *J. Am. Chem. Soc.* **2009**, *131*, 7948-7949.

36. Schmitt, J.; Heitz, V.; Jenni, S.; Sour, A.; Bolze, F.; Ventura, B., π -Extended Porphyrin Dimers as Efficient near-Infrared Emitters and Two-Photon Absorbers. *Supramol. Chem.* **2017**, *29*, 769-775.

37. Deiana, M.; Mettra, B.; Mazur, L. M.; Andraud, C.; Samoc, M.; Monnereau, C.; Matczyszyn, K., Two-Photon Macromolecular Probe Based on a Quadrupolar Anthracenyl Scaffold for Sensitive Recognition of Serum Proteins under Simulated Physiological Conditions. *ACS Omega* **2017**, *2*, 5715-5725.

38. Van Stryland, E. W.; Sheik-Bahae, M., Z-Scan Measurements of Optical Nonlinearities. In *Characterization Techniques and Tabulations for Organic Nonlinear Materials*, Kuzyk, M. G.; Dirk, C., Eds. Marcel Dekker: 1998; pp 655-692.

39. Gao, B.; Mazur, L. M.; Morshedi, M.; Barlow, A.; Wang, H.; Quintana, C.; Zhang, C.; Samoc, M.; Cifuentes, M. P.; Humphrey, M. G., Exceptionally Large Two- and Three-Photon Absorption Cross-Sections by OPV Organometalation. *Chem. Commun.* **2016**, *52*, 8301-8304.


40. Lin, T.-C.; Chien, W.; Mazur, L. M.; Liu, Y.-Y.; Jakubowski, K.; Matczyszyn, K.; Samoc, M.; Amini, R. W., Two- and Three-Photon Absorption Properties of Fan-Shaped Dendrons Derived from 2,3,8-Trifunctionalized Indenoquinoxaline Units: Synthesis and Characterization. *J. Mater. Chem. C* **2017**, *5*, 8219-8232.

41. Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Stryland, E. W. V., Sensitive Measurement of Optical Nonlinearities Using a Single Beam. *IEEE J. Quantum Electron.* **1990**, *26*, 760-769.

42. Makarov, N. S.; Drobizhev, M.; Rebane, A., Two-Photon Absorption Standards in the 550– 1600 nm Excitation Wavelength Range. *Opt. Express* **2008**, *16*, 4029-4047.

43. Koszelewski, D.; Nowak-Krol, A.; Drobizhev, M.; Wilson, C. J.; Haley, J. E.; Cooper, T. M.; Romiszewski, J.; Gorecka, E.; Anderson, H. L.; Rebane, A.; Gryko, D. T., Synthesis and Linear and Nonlinear Optical Properties of Low-Melting π -Extended Porphyrins. *J. Mater. Chem. C* **2013**, *1*, 2044-2053.

44. Cepraga, C.; Marotte, S.; Ben Daoud, E.; Favier, A.; Lanoë, P.-H.; Monnereau, C.; Baldeck, P.; Andraud, C.; Marvel, J.; Charreyre, M.-T.; Leverrier, Y., Two-Photon Photosensitizer– Polymer Conjugates for Combined Cancer Cell Death Induction and Two-Photon Fluorescence Imaging: Structure/Photodynamic Therapy Efficiency Relationship. *Biomacromolecules* **2017**, *18*, 4022-4033.

